WSL2 offers improved performance over version 1 by providing more direct access to the host hardware drivers. Recent “Insider Dev Channel” builds of Win10 even allows access to the Windows NVIDIA display driver for GPU computing applications for WSL2 Linux applications! The performance improvements with WSL2 are largely because this version is running as a privileged virtual machine on to of MS Hyper-V. This means that at least low level support for the Hyper-V virtualization layer needs to be enabled to use it. In particular, the Windows feature “VirtualMachinePlatform” must be enabled for WSL2. We tested to see if there was any negative application performance impact.
How To Run Remote Jupyter Notebooks with SSH on Windows 10
Being able to run Jupyter Notebooks on remote systems adds tremendously to the versatility of your workflow. In this post I will show a simple way to do this by taking advantage of some nifty features of secure shell (ssh). What I’ll do is mostly OS independent but I am putting an emphasis on Windows 10 since many people are not familiar with tools like ssh on that OS.
How To Use SSH Client and Server on Windows 10
This post is a setup guide and introduction to ssh client and server on Windows 10. Microsoft has a native OpenSSH client AND server on Windows. They are standard (and in stable versions) on Windows 10 since the 1809 “October Update”. This guide should helpful to both Windows and Linux users who want better interoperability.
The Best Way to Install TensorFlow with GPU Support on Windows 10 (Without Installing CUDA)
In this post I’ll walk you through the best way I have found so far to get a good TensorFlow work environment on Windows 10 including GPU acceleration. YOU WILL NOT HAVE TO INSTALL CUDA! I’ll also go through setting up Anaconda Python and create an environment for TensorFlow and how to make that available for use with Jupyter notebook. As a “non-trivial” example of using this setup we’ll go through training LeNet-5 with Keras using TensorFlow with GPU acceleration. We’ll get a setup that is 18 times faster than using the CPU alone.
Install TensorFlow with GPU Support on Windows 10 (without a full CUDA install)
In this post I’ll walk you through the best way I have found so far to get a good TensorFlow work environment on Windows 10 including GPU acceleration. I’ll go through how to install just the needed libraries (DLL’s) from CUDA 9.0 and cuDNN 7.0 to support TensorFlow 1.8. I’ll also go through setting up Anaconda Python and create an environment for TensorFlow and how to make that available for use with Jupyter notebook. As a “non-trivial” example of using this setup we’ll go through training LeNet-5 with Keras using TensorFlow with GPU acceleration. We’ll get a setup that is 18 times faster than using the CPU alone.
Windows 10 with Xeon Phi
Can you use an Intel Xeon Phi with Windows 10? Yes, you can. However, just because you can do something, doesn’t mean that you should do it! I did a set up and a little testing mainly just to see if it would work — it does!