It’s time for a “Docker with NVIDIA GPU support” update. This post will guide you through a useful Workstation setup (including User-name-spaces and performance tuning) with the new versions of Docker and the NVIDIA GPU container toolkit.

It’s time for a “Docker with NVIDIA GPU support” update. This post will guide you through a useful Workstation setup (including User-name-spaces and performance tuning) with the new versions of Docker and the NVIDIA GPU container toolkit.
In this post I’ve done more testing with Ryzen 3900X looking at the effect of BLAS libraries on a simple but computationally demanding problem with Python numpy. The results may surprise you! I start with a little bit of history of Intel vs AMD performance to give you what may be a new perspective on the issue.
This is a short post showing a performance comparison with the RTX2070 Super and several GPU configurations from recent testing. The comparison is with TensorFlow running a ResNet-50 and Big-LSTM benchmark.
I was able to spend a little time with an AMD Ryzen 3900X. Of course the first thing I wanted know was the double precision floating point performance. My two favorite applications for a “first look” at a new processor are Linpack and NAMD. The Ryzen 3900X is a pretty impressive processor!
Docker is a great Workstation tool. It is mostly used for command-line application or servers but, … What if you want to run an application in a container, AND, use an X Window GUI with it? What if you are doing development work with CUDA and are including OpenGL graphic visualization along with it? You CAN do that!
TensorFlow 2.0.0-beta1 is available now and ready for testing. What if you want to try it but don’t want to mess with doing an NVIDIA CUDA install on your system. The official TensorFlow install documentations has you do that, but it’s really not necessary.
Being able to run Jupyter Notebooks on remote systems adds tremendously to the versatility of your workflow. In this post I will show a simple way to do this by taking advantage of some nifty features of secure shell (ssh). What I’ll do is mostly OS independent but I am putting an emphasis on Windows 10 since many people are not familiar with tools like ssh on that OS.
This post is a setup guide and introduction to ssh client and server on Windows 10. Microsoft has a native OpenSSH client AND server on Windows. They are standard (and in stable versions) on Windows 10 since the 1809 “October Update”. This guide should helpful to both Windows and Linux users who want better interoperability.
Being able to get Docker and the NVIDIA-Docker runtime working on Ubuntu 19.04 makes this new and (currently) mostly unsupported Linux distribution a lot more useful. In this post I’ll go through the steps that I used to get everything working nicely.
This post is the needed update to a post I wrote nearly a year ago (June 2018) with essentially the same title. This time I have presented more details in an effort to prevent many of the “gotchas” that some people had with the old guide. This is a detailed guide for getting the latest TensorFlow working with GPU acceleration without needing to do a CUDA install.