Table of Contents
Introduction
As a physics major in my fifth year at the University of Washington, I am often interested by the applications of the principles I am studying. My focus, modern physics, is quite exciting to me as I am often studying theories and experiments performed only months earlier. In a Quantum Mechanics class, I was given the opportunity to give a short lecture on the application of quantum mechanics to the area of computing, and this article will be focused on that exciting subject. The topic of my lecture and of this article is Quantum-Dot Cellular Automata — a medium that may support super-small computers in as little as the next ten years!
QCA — What Is It?
Simple QCA Uses
This is called a QCA Wire. Since 4 billion quantum dots can fit on the head of a pin, this means that you can have literally thousands of wires in something as thin as a strand of hair. Amazing! On top of that, the data transmission is very reliable. In today’s wiring, great care must be taken to prevent signal degradation. With QCA, quantum tunneling effects tend to stabilize the system. Remember, those electrons want to stay as far apart as possible, and even a slight nudge will send them all the way to the corners. Therefore, a QCA system is, by nature, not vulnerable to signal degradation.
More Complex Uses
With similar arrangements, we are able to construct all the same logic devices that are used in today’s computer hardware. We are able to create inverters, AND gates, OR gates, XOR gates, and even gates that are programmable in function! For more information on these functions, Notre Dame has a great resource, which you can access by clicking here.
Problems
If the QCA cell size could be made as small a few Angstroms (on the order of the size of a molecule), the repulsion energy of the electrons would be comparable to atomic energy levels – several electron volts. This is not feasible with the semiconductor implementations that we have been thinking about, but may ultimately be attainable in molecular electronics. For example, if we can engineer a single molecule to be in the shape of a QCA cell, as pictured to the left, then the thermal effects would be dismissible. In fact, with a QCA cell of that size, the maximum operating temperature increases to 700K — a temperature that is hot enough to melt humans. In other words, thermal effects would no longer be a problem!